彭洪尚
教授 纳米材料与技术系
电话:18810295236 Email: hshpeng@muc.edu.cn
个人简历
教育:
1994-1998年,山东轻工业学院无机非金属材料专业 工学学士
2000-2003年,吉林大学材料物理与化学专业 工学硕士
2003-2007年,北京交通大学光学专业 理学博士
工作:
2015年-至今,中央民族大学理学院 教授(博导)
2009-2015年,北京交通大学理学院 历任讲师、副教授、教授
2013-2014年,美国华盛顿大学(西雅图) 访问学者
2007-2009年,德国雷根斯堡大学 洪堡学者(博士后)
2005-2006年,美国克莱姆森大学 访问学生
研究领域
生物荧光纳米传感器;
光学生物物理效应(光热、光动力)在肿瘤治疗中的应用;
量子点发光(半导体、钙钛矿)
基金、奖励、荣誉和学术兼职
国家自然科学基金(面上) 2018-2021
中央民族大学杰出人才 2016-2018
国家自然科学基金(面上) 2016-2016
教育部新世纪优秀人才 2013-2015
国家自然科学基金(面上) 2011-2013
教育部留学回国启动基金 2011-2012
中央高校基本科研业务费(重点项目) 2011-2013
光学学会第二届生物医学光子学专委会委员 2015-2019
主要论著
已发表科研论文80余篇,授权发明专利4项。
近期发表的代表性文章(#为第一作者,*为通讯作者):
[41] Construction of FRET‐Based Off‐On Fluorescent Nanoprobes for Sensitive Detection of Intracellular Singlet Oxygen.J. Ping, J. Qin, C. Zhou, L. Guo, B. Liu, Z. Chen,Z. Geng and H. Peng*. ChemNanoMat. 2019,doi.org/10.1002/cnma. 201900571.
[40]Facile synthesis of multifunctional nanoparticles encoded with quantum dots and magnetic nanoparticles: cell tagging and MRI. Q. Zhuang, X. Wang, Z. Geng,H. Peng*,Nanotechnol. 2020, 31, 065101.
[39]Ratiometric Luminescent Nanoprobes Based on Ruthenium and Terbium-Containing Metallopolymers for Intracellular Oxygen Sensing. W. Zhao, C. Zhou,H. Peng*,Polymers 2019,11(8),1290 .
[38] Facile synthesis of fluorinated nanophotosensitizers with self-supplied oxygen for efficient photodynamic therapy. J. Ping, F. You*, Z. Geng and H. Peng*, Nanotechnol. 2019, 30, 345207.
[37] Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation.C. Zhou, W. Zhao, F. You, Z. Geng, H. Peng*,ACS Sens. 2019, 4, 984-991.
[36] Facile synthesis of dual-functional nanoparticles co-loaded with ZnPc/Fe3O4 for PDT and magnetic resonance imaging. J. Qin,H. Peng*, J. Ping, Z. Geng,Mater. Res. Bull. 2019, 114, 90-94.
[35] Enhancing the exciton emission of CsPbCl3perovskite quantum dots by incorporation of Rb+ ions, Z. Zhao,W. Xu,G. Pan,Y. Liu,M. Yang,S. Hua,X. Chen,H. Peng*, H. Song,Mater. Res. Bull.2019, 112, 142-146.
[34] Ultrastable LuminescentOrganic-Inorganic Perovskite Quantum Dots via Surface Engineering: Coordination ofMethylammonium Bromide and Covalent Silica Encapsulation,F. Zeng, M. Yang, J. Qin, F. Teng, Y. Wang, G. Chen, D. Wang,H. Peng*,ACS Appl. Mater. Interfaces2018, 10, 42837−42843
[33]A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy,J. Ping,H. Peng*, J. Qin, et al.Microchimica Acta 2018, 185, 269
[32] In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability, M,Yang,H. Peng*, et al. J Colloid Interf. Sci.2018, 509, 32-38
[31] Optically encoded semiconducting polymer dots with single-wavelength excitation for barcoding and tracking of single cells,C. Kuo,H. Peng, et al.Anal. Chem. 2017, 89, 6232
[30] Iridium-Based Dual-Functional Nanoparticles for Far-Red Imaging and Photodynamic Therapy. L Guo, H. Peng*, R. Shen, J. Ping, F. You, Y. Wang, M. Song, Z. Qu.Nano Biomed. Eng. 2017, 9, 1-8.
[29] Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors. H. Ma,H. Peng*, F. You, J. Ping, C. Zhou, L. Guo.Methods Appl. Fluoresc. 2016, 4, 035001
[28]Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy.J Ping, H. Peng*, W Duan, F You, M Song, Y Wang,J. Mater. Chem. B, 2016, 4, 4482-4489.
[27]Preparation of Fluorescent Dye-Doped Biocompatible Nanoparticles for Cell Labeling. X Wang,H. Peng*, S Huang, F You,J Nanosci Nanotechnol, 2016,16, 3602-3607
[26]Intracellular Temperature Imaging in Gold Nanorod-Assisted Photothermal Therapy with Luminescent Eu (III) Chelate Nanoparticles.H Ding, L Yang,H. Peng*, X Wang, F You, L Hou,J Nanosci Nanotechnol, 2016, 16,3877-3882
[25] Preparation of fluorescent enzymatic nanosensors for glucose sensing. S. Gao,H. Peng*, X. Wang, F. You, F. Teng, H. Wang,Sens Actuators B Chem, 2016, 222, 638-644
[24] Improved luminescence in YVO4:Eu3+@YVO4 core-shell nanoparticles through surface confined thermal diffusion of Eu3+.D. Xie,H. Peng*, S. Huang, F. You, X. Zhang, G. Wang,Mater. Lett, 2015, 157, 307-310.
[23] A Pyrene@Micelle Sensor for Fluorescent Oxygen Sensing.Y. Yuang,H. Peng*, J. Ping, X. Wang, F. You,BioMed Research International, 2015, Article ID 245031.
[22] One-Step Nanoengineering of Hydrophobic Photosensitive Drugs for the Photodynamic Therapy. C. Zhou, M Abbas, M Zhang, Q Zou, G Shen, C Chen, H Peng*, X Yan**J Nanosci Nanotechnol,2015, 15, 10141-10148.
[21] Soft fluorescent nanomaterials for biological and biomedical imaging. H. Peng, D. T. Chiu*,Chem. Soc. Rev., 2015, 44, 4699-4722.
[20] Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity. X. Wang,H. Peng*, L. Yang, F. You, F. Teng *, L, Hou, O Wolfbeis. Angew. Chemie. Int. Ed. 2014,53, 12471 –12475
[19] Luminescent Ru(bpy)32+-doped silica nanoparticles for imaging of intracellular temperature. L. Yang,H. Peng*, H. Ding, F. You, L. Hou, F. Teng, Microchim Acta, 2014,181, 743–749
[18] Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. X. Wang,H. Peng*, L. Yang, F. You, F. Teng, A. Tang, F. Zhang, X. Li.J. Mater. Chem. B, 2013,1,5143-5152.
[17] Sensing water in organic solvent using polyurethane-silica hybrid membrane doped with a luminescent ruthenium complex. H. Peng*, X. Li, F. You, F. Teng, S. Huang,Microchim Acta, 2013,180, 807-812.
[16] Core-shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties. D. Xie,H. Peng*, S. Huang, F. You,J. Nanomater. 2013, 891515.
[15] Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing.X. Wang, H. Peng*, H. Ding,F.You, S. Huang, F.Teng,H.Song,B. Dong,J. Mater. Chem., 2012,22, 16066-16071.
[14] Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen.X. Wang,H. Peng*, Z. Chang, L. Hou, F. You, F. Teng, H. Song, B. Dong,Microchim Acta 2012,178, 147-152.
[13]Luminescenteuropium (III)nanoparticles forsensing andimaging of temperature in thephysiologicalrange.H. Peng, M. I. J.Stich, J.Yu, L. Sun, L. H. Fischer and O.S. Wolfbeis*, Adv. Mater.2010,22:716-719.
[12] ANanogel forratiometricfluorescentsensing ofphysiological pHvalues. H. Peng*, J. Stolwijk, L. Sun, J. Wegener and O. S. Wolfbeis*,Angew.Chem. Int.Ed. 2010,49:4246-4249.
[11]Ratiometricfluorescentnanoparticles forsensingtemperature. H. Peng*, S. Huang, O. S. Wolfbeis,J. Nanopart.Res. 2010,12:2729-2733.
[10]Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70 °C. J. Yu*, L.Sun,H. Peng and M.I. J. Stich,J. Mater. Chem. 2010, 20:6975-6981.
[9] Temperature-sensitiveluminescentnanoparticles andfilmsbased on aterbium (III)complexprobe. L. Sun*, J.Yu,H. Peng, J. Zhang, L. Shi and O. S. Wolfbeis*, J. Phys. Chem. C 2010,114:12642-12648.
[8] pH sensor based on upconverting luminescent lanthanide nanorods. L. Sun,H. Peng, M.I. J. Stich, D.Achatz and O. S. Wolfbeis*, Chem. Commun. 2009,33:5000-5002.
[7] Highly luminescent Eu3+ chelate nanoparticles prepared by reprecipitation-encapsulation method.H. Peng, C. Wu, Y. Jiang, S. Huang and J. McNeill*, Langmuir 2007,23:1591-1595.[6] Analysis of surface effect on luminescent properties of Eu3+ in YVO4 nanocrystals.H. Peng, S Huang*, L Sun. C. Yan, Phys. Lett. A 2007,367:211-214.
[5] Surface state analysis of YVO4:Eu3+ nanocrystals by electrostatic point charge model.H. Peng, S. Huang*, L. Sun,J. Lumin. 2007,122:847-850.
[4] Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles. C. Wu,H. Peng, Y. Jiang and J. McNei*ll.J. Phys. Chem. B 2006,110:14148-14154.
[3] Preparation and surface effect analysis of trivalent europium-doped nanocrystalline La2O2S
H. Peng, S. Huang*, F. You, et al.J. Phys. Chem. B 2005,109, 5774-5778.
[2] Spectral difference between nanocrystalline and bulk Y2O3: Eu3+. H. Peng,H. Song*, B. Chen, et al.,Chem. Phys. Lett. 2003,370, 485-489.
[1] Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3: Eu3+. H. Peng, H. Song*, B. Chen, et al., J. Chem. Phys. 2003,118, 3277-3282.
1.