彭洪尚

发布日期:2018-09-27    浏览次数:


说明: DSCF9126

彭洪尚

教授 光电科学系

电话:68933910 Email: hshpeng@muc.edu.cn

个人简历

教育:

1994-1998年,山东轻工业学院无机非金属材料专业 工学学士

2000-2003年,吉林大学材料物理与化学专业 工学硕士

2003-2007年,北京交通大学光学专业 理学博士

工作:

2015年-至今,中央民族大学理学院 教授(博导)

2009-2015年,北京交通大学理学院 历任讲师、副教授、教授

2013-2014年,美国华盛顿大学(西雅图) 访问学者

2007-2009年,德国雷根斯堡大学 洪堡学者(博士后)

2005-2006年,美国克莱姆森大学 访问学生

研究领域

生物荧光纳米传感器;

光学生物物理效应(光热、光动力)在肿瘤治疗中的应用;

量子点发光(半导体、钙钛矿)

基金、奖励、荣誉和学术兼职

国家自然科学基金(面上)

2022-2025

国家自然科学基金(面上)

2019-2021

国家自然科学基金(面上)

2016-2016

教育部新世纪优秀人才

2013-2015

国家自然科学基金(面上)

2011-2013

教育部留学回国启动基金

2011-2012

中央高校基本科研业务费(重点项目)

2011-2013

光学学会第四届生物医学光子学专委会常委

2024-2029

主要论著

已发表科研论文100余篇,SCI引用3600余次,授权发明专利6项。

发表的代表性文章(#为第一作者,*为通讯作者):

1. Polymer organic framework-based ratiometric fluorescent probe for non-enzymatic glucose detection. R, Zhang, S Chatterjee, J. Ping, B. Liu, H. Peng*, Sens. Actuators B Chem. 2025, 423, 13682

2. A novel La-modified polytitanium chloride coagulant: Efficient algae removal and enhanced photocatalytic ability of recycled algal sludge.T. Yang, J. Zhang, J. Qin, X. Wu, H. Peng*, J. Rare Earth. 2024, accepted.

3. Smartphone-assisted fluorescent microfluidic-chip for sensitive detection of sweat glucose via dual-sensing of O2/H2O2. Z. Li, T. Li, X. Wang*, J. Ping, H. Peng*, Talanta, 2025, 281, 126883

4. Facile synthesis of vaterite CaCO3 microspheres from carbon capture and solid waste utilization towards microwave absorption and dye wastewater adsorption [J]. J Zhang, Z Wang, T Yang, S Chatterjee, M Cao*, H. Peng*, Carbon, 2024: 119199

5. Chatterjee S, Liu B, Peng H. Chelation strategies in spiropyran-based chemosensors for colorimetric and fluorescent sensing of metal ions and anions[J]. Coordination Chemistry Reviews, 2024, 508: 215779.

6. A wireless optoelectronic probe to monitor oxygenation in deep brain tissue. Xue Cai, Haijian Zhang, Penghu Wei, Quanlei Liu, Dawid Sheng, Zhen Li, Bozhen Zhang, Guo Tang, Wenxin Zhao, Zhongyin Ye, Zhao Xue, Yang Yang Dai, Changming Wang, Yuqi Wang, Lan Yin, H. Peng, H. Ding, G. Zhao & X. Sheng. Nature Photonics, 2024, 18, 492–500

7. Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy,B Liu, Z Liu, X Lu, P Wu, Z Sun, H Chu, H. Peng*, Materials & Design 2023, 228, 111861.

8. Highly luminescent and stable bright-blue CH3NH3Pb(Cl/Br)3 perovskite quantum dots with in-situ formed silica shell. M. Yang, Q. Dai, A. Tang, F. Teng, H. Peng*, Materials Research Bulletin 2023, 158, 112049.

9. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. L Guo, Q Xia, J Qin, M Yang, T Yang, F You, Z Chen, B Liu, H. Peng*. J Colloid Interf. Sci. 2022, 616, 81-92.

10. Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations. X Wang*, Y Feng, J Liu, K Cheng, Y Liu, W Yang, H Zhang, H. Peng*. Sepctrochim Acta A. 2022, 267, 120477

11. A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. L Guo, J Ping, J Qin, M Yang, X Wu, M You, F You, H. Peng*, Nanomater. 2021, 11, 1293.

12. Broadband organic photodetectors exhibiting photomultiplication with a narrow band gap non-fullerene acceptor as an electron trap. M. Liu, J. Miao, J. Wang, Z. Zhao, K. Yang, X. Zhang, H. Peng*, F. Zhang,* J. Mater. Chem. C. 2020, 8, 9854-9860.

13. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. C. Zhou, W. Zhao, F. You, Z. Geng, H. Peng*, ACS Sens. 2019, 4, 984-991.

14. Ultrastable Luminescent Organic-Inorganic Perovskite Quantum Dots via Surface Engineering: Coordination of Methylammonium Bromide and Covalent Silica Encapsulation, F. Zeng, M. Yang, J. Qin, F. Teng, Y. Wang, G. Chen, D. Wang, H. Peng*, ACS Appl. Mater. Interfaces 2018, 10, 42837−42843

15. A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy, J. Ping, H. Peng*, J. Qin, et al. Microchimica Acta 2018, 185, 269

16. In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability, M,Yang, H. Peng*, et al. J Colloid Interf. Sci. 2018, 509, 32-38

17. Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy. J Ping, H. Peng*, W Duan, F You, M Song, Y Wang, J. Mater. Chem. B, 2016, 4, 4482-4489.

18. Preparation of fluorescent enzymatic nanosensors for glucose sensing. S. Gao, H. Peng*, X. Wang, F. You, F. Teng, H. Wang, Sens Actuators B Chem, 2016, 222, 638-644

19. Soft fluorescent nanomaterials for biological and biomedical imaging. H. Peng, D. T. Chiu*, Chem. Soc. Rev., 2015, 44, 4699-4722.

20. Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity. X. Wang, H. Peng*, L. Yang, F. You, F. Teng *, L, Hou, O Wolfbeis. Angew. Chemie. Int. Ed. 2014, 53, 12471 –12475

21. Luminescent Ru(bpy)32+-doped silica nanoparticles for imaging of intracellular temperature. L. Yang, H. Peng*, H. Ding, F. You, L. Hou, F. Teng, Microchim Acta, 2014, 181, 743–749

22. Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. X. Wang, H. Peng*, L. Yang, F. You, F. Teng, A. Tang, F. Zhang, X. Li. J. Mater. Chem. B, 2013, 1,5143-5152.

23. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing. X. Wang, H. Peng*, H. Ding, F. You, S. Huang, F. Teng, H. Song, B. Dong, J. Mater. Chem., 2012, 22, 16066-16071.

24. Luminescent europium (III) nanoparticles for sensing and imaging of temperature in the physiological range. H. Peng, M. I. J. Stich, J. Yu, L. Sun, L. H. Fischer and O. S. Wolfbeis*, Adv. Mater. 2010, 22:716-719.

25. A Nanogel for ratiometric fluorescent sensing of physiological pH values. H. Peng*, J. Stolwijk, L. Sun, J. Wegener and O. S. Wolfbeis*, Angew. Chem. Int. Ed. 2010, 49:4246-4249.

26. Highly luminescent Eu3+ chelate nanoparticles prepared by reprecipitation-encapsulation method. H. Peng, C. Wu, Y. Jiang, S. Huang and J. McNeill*, Langmuir 2007, 23:1591-1595.

27. Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles. C. Wu, H. Peng, Y. Jiang and J. McNei*ll. J. Phys. Chem. B 2006, 110:14148-14154.

28. Preparation and surface effect analysis of trivalent europium-doped nanocrystalline La2O2S

H. Peng, S. Huang*, F. You, et al. J. Phys. Chem. B 2005, 109, 5774-5778.

29. Spectral difference between nanocrystalline and bulk Y2O3: Eu3+. H. Peng, H. Song*, B. Chen, et al., Chem. Phys. Lett. 2003, 370, 485-489.

30. Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3: Eu3+. H. Peng, H. Song*, B. Chen, et al., J. Chem. Phys. 2003, 118, 3277-3282.